L’amélioration des performances d’un catalyseur moléculaire peut s’envisager par la modification de sa structure, mais aussi de celle de la matrice qui le supporte, qui peut en changer totalement les propriétés. Dans le cadre d’une collaboration avec l’université de Bochum, les chercheurs montrent que dans des systèmes optimisés, ces effets peuvent prévenir complètement et durablement l’inactivation d’un catalyseur d’oxydation de l’hydrogène par l’oxygène sans compromettre l’efficacité du système. L’approche est particulièrement utile/envisageable dans le contexte des biopiles à combustibles, où le catalyseur sur une des deux électrodes oxyde le dihydrogène, mais peut être inactivé par le dioxygène qui peut traverser la membrane de la fuelcell.
Author: admin
Oxygen caught on film
A Research Highlight by David Schilter https://www.nature.com/articles/s41570-019-0141-z

Complete Protection of O2-Sensitive Catalysts in Thin Films
Huaiguang Li, Darren Buesen, Sebastien Dementin, Christophe Leger, Vincent Fourmond, Nicolas Plumere, JACS 2019 doi:10.1021/jacs.9b06790
Energy conversion schemes involving dihydrogen hold great potential for meeting sustainable energy needs, but widespread implementation cannot proceed without solutions that mitigate the cost of rare metal catalysts and the O2-instability of biological and bio-inspired replacements. Recently, thick films (>100 µm) of redox polymers were shown to prevent O2 catalyst damage, but also resulted in unnecessary catalyst load and mass transport limitations. Here, we apply novel homogeneous thin films (down to 3 µm) that provide O2-immunity while achieving highly efficient catalyst utilization. Our empirical data is explained by modeling, demonstrating that resistance to O2 inactivation can be obtained for non-limiting periods of time when the optimal thickness for catalyst utilization and current generation is achieved, even when using highly fragile catalysts such as the enzyme hydrogenase. We show that different protection mechanisms operate depending on matrix dimensions and intrinsic catalyst properties, and can be integrated together synergistically to achieve stable H2 oxidation currents in the presence of O2, potentially enabling a plethora of practical applications for bio-inspired catalysts in harsh oxidative conditions.
A novel versatile microbiosensor for local hydrogen detection by means of scanning photoelectrochemical microscopy
Fangyuan Zhao, Felipe Conzuelo, Volker Hartmann, Huaiguang Li, Stefanie Stapf, Marc M.Nowaczyk, Matthias Rögner, Nicolas Plumeré, Wolfgang Lubitz, Wolfgang Schuhmann Biosensors and Bioelectronics, Volume 94, 15 August 2017, Pages 433-437 https://doi.org/10.1016/j.bios.2017.03.037
Redox polymers in bioelectrochemistry: Common playgrounds and novel concepts
Adrian Ruff, Current Opinion in Electrochemistry 2017, https://doi.org/10.1016/j.coelec.2017.06.007
Protection and Reactivation of the [NiFeSe] Hydrogenase from Desulfovibrio vulgaris Hildenborough under Oxidative Conditions
Adrian Ruff , Julian Szczesny, Sónia Zacarias, Inês A. C. Pereira, Nicolas Plumeré, and Wolfgang Schuhmann. ACS Energy Lett., 2017, 2, pp 964–968. DOI: 10.1021/acsenergylett.7b00167
Movies in support of the calculations in J Am Chem Soc. 2015 Apr 29;137(16):5494-505
See more at mov.bip06.fr
A Redox Hydrogel Protects the O2 -Sensitive [FeFe]-Hydrogenase from Chlamydomonas reinhardtii from Oxidative Damage
Oughli AA, Conzuelo F, Winkler M, Happe T, Lubitz W, Schuhmann W, Rüdiger O, Plumeré N. Angew Chem Int Ed Engl. 2015 Oct 12;54(42):12329-33. doi: 10.1002/anie.201502776. Continue reading
Mechanism of Protection of Catalysts Supported in Redox Hydrogel Films
Fourmond V, Stapf S, Li H, Buesen D, Birrell J, Rüdiger O, Lubitz W, Schuhmann W, Plumeré N, Léger C. J Am Chem Soc. 2015 Apr 29;137(16):5494-505. doi: 10.1021/jacs.5b01194. Continue reading